Licenciatura em Biologia

Física para Biólogos

2019-2020

4- Ondas e óptica

- Movimento harmónico simples.
- Oscilações amortecidas. Regime forçado e ressonância.
- Ondas a uma dimensão.
- Ondas estacionárias. Ouvir e falar.
- Difração.
- Óptica geométrica Leis da reflexão e refracção.
- Espelhos e lentes. Instrumentos ópticos.
- A visão.

Estes slides contêm imagens retiradas da web, assim como conteúdos gráficos das referências Physics of the Life Sciences, J. Newman, Springer, 2008.

Physics for Scientists and Engineers, R. A. Serway & J. W. Jewett, Thomson Brooks/Cole 2004.

As ondas são perturbações extensas que podem sobrepor-se, ou 'somar-se'.

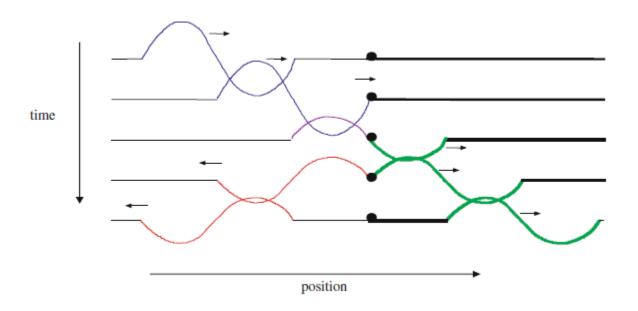
Sobreposição de ondas



Em meios finitos, as ondas e a sua reflexão na fronteira do meio sobrepõem-se.

A sobreposição de duas ondas pode dar origem a uma perturbação de maior ou de menor amplitude.

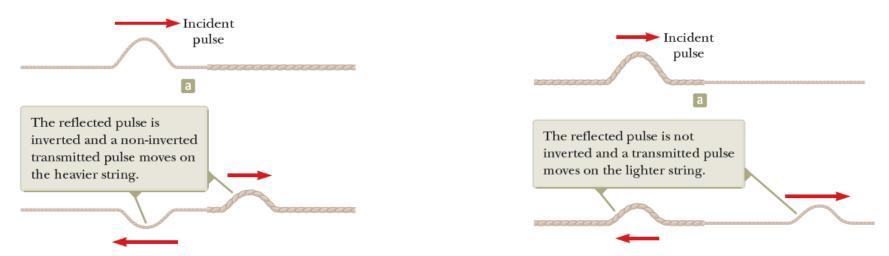
Sobreposição e interferência



Interferência destrutiva

Consideraremos mais uma vez o caso particular das vibrações transversais de uma corda.

Reflexão e transmissão

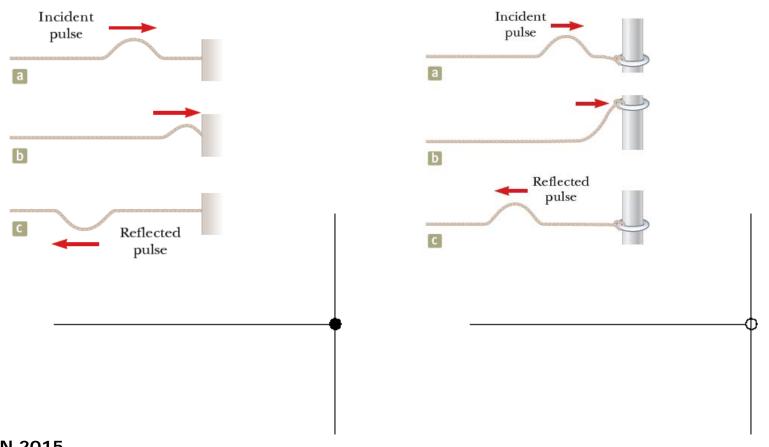


As condições de reflexão e transmissão dependem das condições de fronteira e das propriedades dos meios adjacentes.

Uma descontinuidade na densidade de uma corda em que se propaga um impulso altera a velocidade de propagação.

Reflexão e transmissão

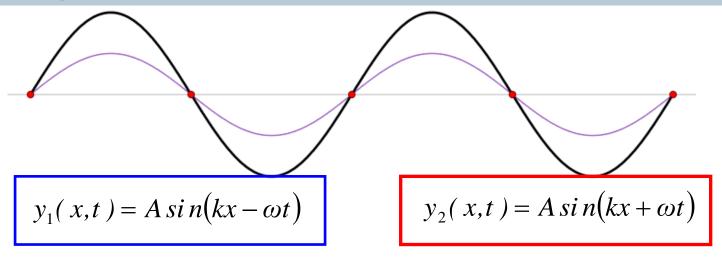
v2 < v1 -> reflexão com inversão v2 > v1 -> reflexão sem inversão



A descontinuidade na velocidade de propagação do impulso dá origem a uma transmissão parcial do impulso, e a uma reflexão parcial.

AN 2015

Numa fronteira não há transmissão, e a reflexão é governada pelas condiçoes de fronteira.


Ondas numa corda finita

6

A solução geral para uma vibração numa corda é a sobreposição de duas ondas, uma a propagar-se num sentido e outra no outro.

Ondas periódicas numa corda finita

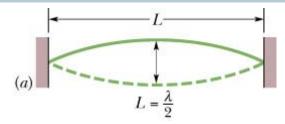
$$y_1(x,t) + y_2(x,t) = 2A\cos(\omega t)\sin(kx) = (2A\sin kx)\cos\omega t$$

Se essas duas ondas tiverem amplitude igual, o resultado é uma onda estacionária.

Numa corda finita com extremos fixos, ambos os extremos têm que coincidir com nodos da solução estacionária.

Ondas periódicas numa corda finita

$$\sin k \ x = 0$$
 $\Rightarrow \frac{2\pi}{\lambda} x = \pi, 2\pi, 3\pi, ... \Rightarrow x = \frac{\lambda}{2}, \lambda, \frac{3\lambda}{2}, ..., \frac{n\lambda}{2}$

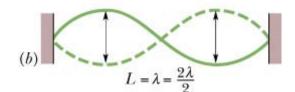

$$y(L,t) \equiv 0 \implies \sin k L = 0$$

$$\lambda_n = \frac{2L}{n}$$
 $f_n = n \frac{v}{2L} = n f_1$ $n = 1, 2, 3, ...$

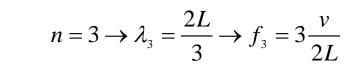
Em geral, as condições de fronteira limitam os modos de vibração num meio finito.

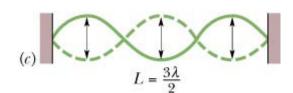
Numa corda finita com extremos fixos, ambos os extremos têm que coincidir com nodos da solução estacionária.

Ondas periódicas numa corda finita



Modo fundamental ou primeiro harmónico


$$n = 1 \rightarrow \lambda_1 = 2L = \frac{2L}{1} \rightarrow f_1 = 1\frac{v}{2L}$$


Segundo harmónico

$$n=2 \rightarrow \lambda_2 = L = \frac{2L}{2} \rightarrow f_2 = 2\frac{v}{2L}$$

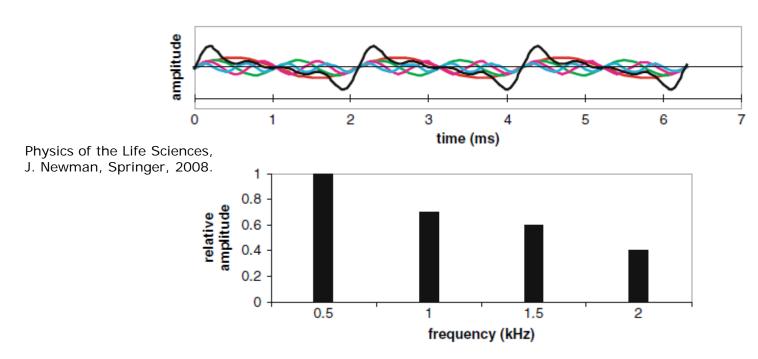
Terceiro harmónico

Em geral, as condições de fronteira limitam os modos de vibração num meio finito.

9

Cada nota musical corresponde a combinações de uma frequência fundamental e das suas harmónicas.

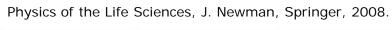
Instrumentos musicais

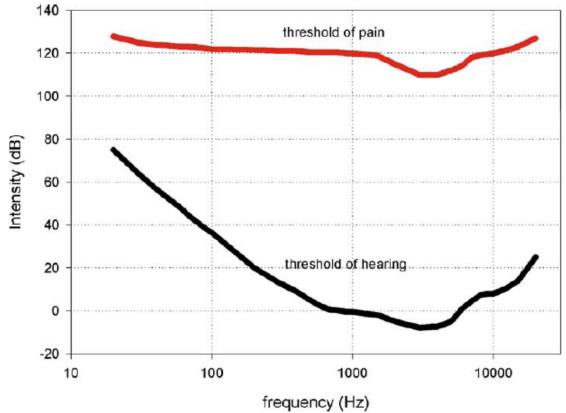

Diferentes instrumentos usam diferentes processos para seleccionar frequências em associação com as notas musicais.

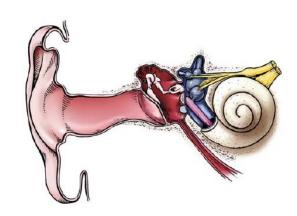
O timbre do som depende da amplitude relativa das diferentes harmónicas.

https://www.youtube.com/watch?v=ttgLyWFINJI

A produção da fala é semelhante do ponto de vista físico ao funcionamento de um instrumento musical de geometria variável.


Ouvir e falar




Um espectro sonoro representa as amplitudes das diferentes frequências que compõem o som.

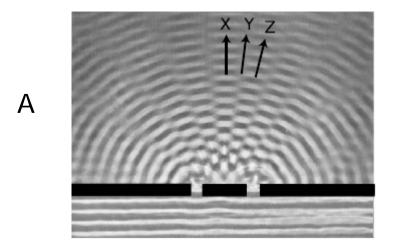
A banda de frequências em que há sensibilidade auditiva depende da geometria do ouvido externo, que funciona como uma caixa de ressonância.

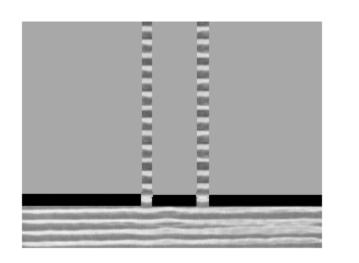
Ouvir e falar

12

Licenciatura em Biologia

Física para Biólogos

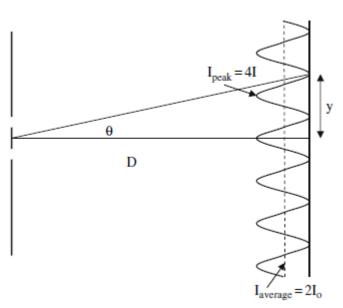

2019-2020


4- Ondas e óptica

- Movimento harmónico simples.
- Oscilações amortecidas. Regime forçado e ressonância.
- Ondas a uma dimensão.
- Ondas estacionárias. Ouvir e falar.
- Difração.
- Óptica geométrica Leis da reflexão e refracção.
- Espelhos e lentes. Instrumentos ópticos.
- A visão.

Interferência e difração são a assinatura dos fenómenos ondulatórios.

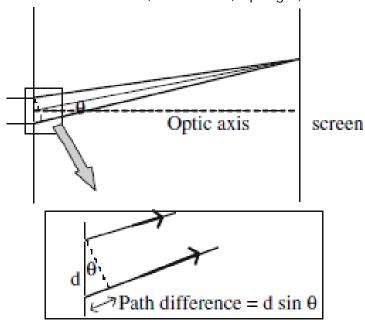
Padrões de difração


A difração resulta da maneira como uma onda se comporta quando há um obstáculo à sua propagação (A). Esse comportamento é essencialmente diferente do que se daria se fosse um feixe de partículas a atingir o obstáculo (B).

B

A detecção de padrões de difração para a luz mostrou que a luz é um fenómeno ondulatório.

A experiência de Young


A onda difratada forma num alvo característicos padrões de interferência. A distância entre as riscas depende do comprimento de onda da luz.

AN 2015

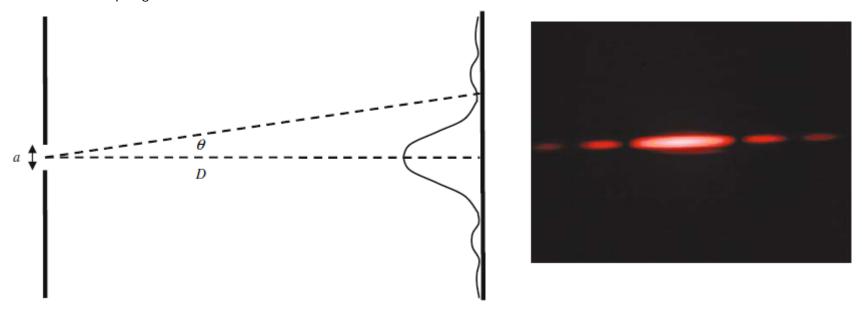
As riscas brilhantes (escuras) correspondem às posições de interferência construtiva (destrutiva) da contribuição que chega de cada um dos orifícios.

A experiência de Young

Physics of the Life Sciences, J. Newman, Springer, 2008.

$$d\sin\theta = n\lambda$$

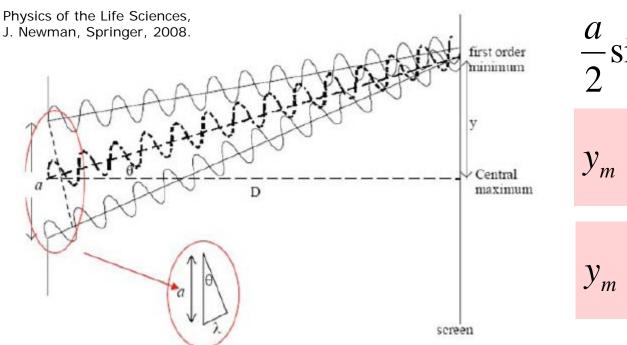
$$y_M = n \frac{\lambda}{d} D$$


Esta expressão simplificada para a coordenada de posição dos sucessivos máximos de intensidade usa a aproximação dos pequenos ângulos.

16

O mesmo efeito produz padrões de interferência também com uma única fenda, quando o seu tamanho é da ordem do comprimento de onda.

Difração em fenda única


Physics of the Life Sciences, J. Newman, Springer, 2008.

O tamanho da mancha luminosa é dado pela distância entre os primeiros mínimos de intensidade, e não pelo tamanho do orifício.

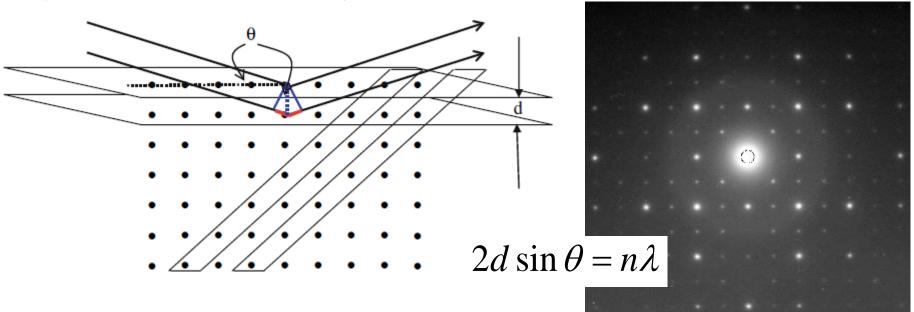
Os primeiros mínimos correspondem a pontos de interferência destrutiva de pares de ondas com origem na fenda em pontos distantes de a/2.

Difração em fenda única

$$\frac{a}{2}\sin\theta = n\frac{\lambda}{2}$$

$$y_m = n \frac{\lambda}{a} D$$

$$y_m = 1.22 \, n \frac{\lambda}{a} D$$


No caso da fenda circular a expressão vem afectada de um factor geométrico.

AN 2015

Um princípio semelhante está na base da análise de estruturas cristalinas por difração de raios X.

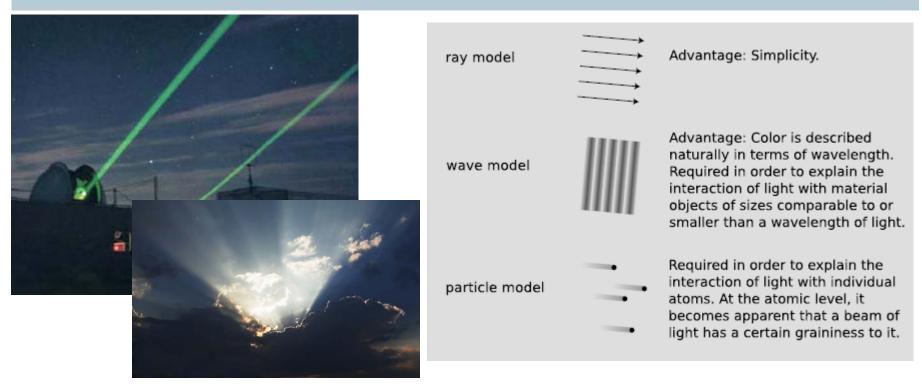
Difração de raios X

Physics of the Life Sciences, J. Newman, Springer, 2008.

O comprimento de onda do dos raios X, da ordem do nm, é o adequado para detectar estrutura à escala atómica.

Licenciatura em Biologia

Física para Biólogos

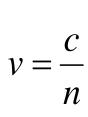

2019-2020

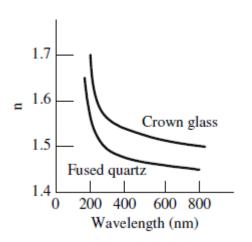
4- Ondas e óptica

- Movimento harmónico simples.
- Oscilações amortecidas. Regime forçado e ressonância.
- Ondas a uma dimensão.
- Ondas estacionárias. Ouvir e falar.
- Difração.
- Óptica geométrica. Leis da reflexão e refracção.
- Espelhos e lentes. Instrumentos ópticos.
- A visão.

Como o comprimento de onda da luz é muito pequeno à escala macroscópica, é possível em muitos casos desprezar os efeitos da natureza ondulatória da luz.

Raios de luz

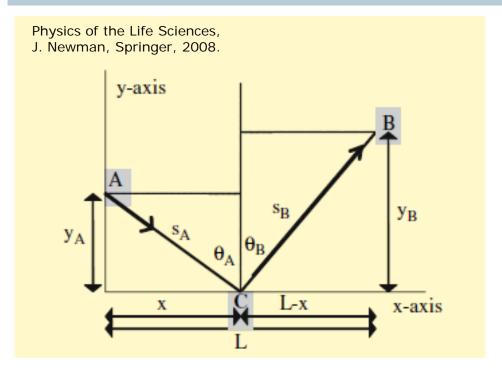

No modelo da óptica geométrica, um meio óptico é caracterizado pela velocidade de propagação da luz nesse meio.


O índice de refração n de um meio é a medida da velocidade da luz nesse meio. Em geral, depende do comprimento de onda da luz.

Índice de refração

Table 20.1 Refractive Indices of Materials^a

Material (20°C Unless Specified)	Refractive Index	
Diamond	2.42	
Glass (crown)	1.52	
Benzene	1.50	
Quartz (fused)	1.46	
Water	1.33	
Air (1 atm, 0°C)	1.0003	

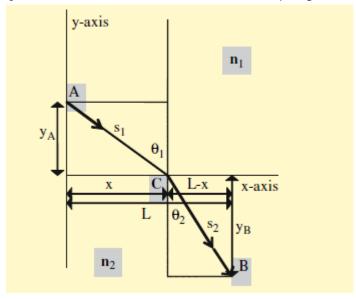

Physics of the Life Sciences, J. Newman, Springer, 2008.

A óptica geométrica descreve o comportamento dos raios de luz através de meios contíguos com índice de refração homogéneo.

^aMeasured at a wavelength of 589 nm (yellow sodium light).

Os raios luminosos propagam-se em linha recta num meio homogéneo, o que corresponde ao tempo mínimo para o percurso entre dois pontos.

Leis da reflexão e da refracção

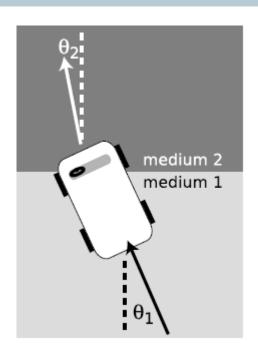

$$\theta_i = \theta_r$$

A lei da reflexão pode deduzir-se impondo a condição de tempo mínimo ao percurso dos raios luminosos.

Os raios luminosos propagam-se em linha recta num meio homogéneo, o que corresponde ao tempo mínimo para o percurso entre dois pontos.

Leis da reflexão e da refracção

Physics of the Life Sciences, J. Newman, Springer, 2008.

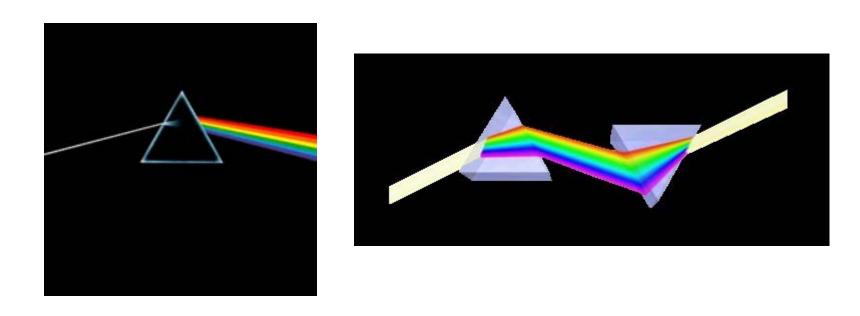


$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

A lei da refracção pode deduzir-se impondo a condição de tempo mínimo ao percurso dos raios luminosos.

A lei da refracção pode deduzir-se impondo a condição de tempo mínimo ao percurso dos raios luminosos.

Leis da reflexão e da refracção



$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

A mudança de direcção dos raios corresponde ao balanço entre distância percorrida e velocidade de propagação em cada meio.

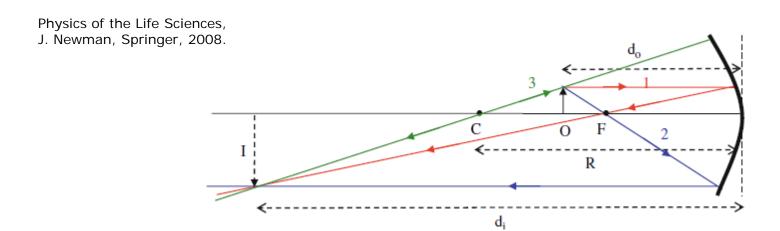
Em geral, o índice de refracção de um meio depende do comprimento de onda da luz – diz-se então que o meio é dispersivo.

Prisma de Newton

A separação do espectro da luz branca num prisma resulta da dispersividade do vidro.

Licenciatura em Biologia

Física para Biólogos

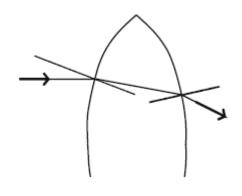

2019-2020

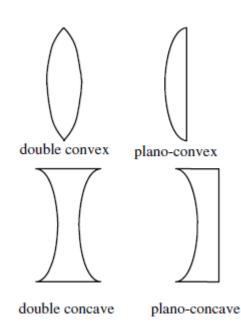
4- Ondas e óptica

- Movimento harmónico simples.
- Oscilações amortecidas. Regime forçado e ressonância.
- Ondas a uma dimensão.
- Ondas estacionárias. Ouvir e falar.
- Difração.
- Óptica geométrica. Leis da reflexão e refracção.
- Espelhos e lentes. Instrumentos ópticos.
- A visão.

A lei da reflexão determina a forma e posição das imagens formadas por espelhos.

Espelhos

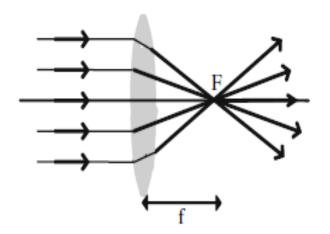



No caso de espelhos esféricos, a lei da reflexão traduz-se em regras gráficas simples bem conhecidas.

A lei da refracção determina a forma e posição das imagens formadas por lentes.

Lentes

Physics of the Life Sciences, J. Newman, Springer, 2008.

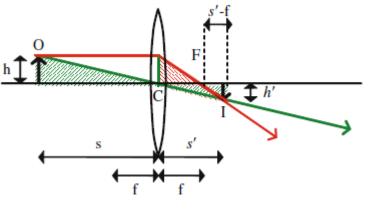


A lei da refracção intervem nas duas interfaces da lente, e o efeito no percurso dos raios luminosos depende da concavidade das interfaces.

2)

A equação do fabricante de lentes sintetiza o resultado para lentes finas e raios próximos do eixo óptico.

Lentes

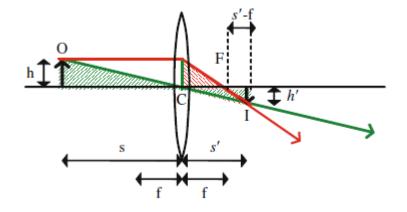

$$\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Nesta equação os raios das interfaces encontradas pelo feixe incidente são contados positivos (negativos) se a interface é convexa (côncava).

A equação das lentes permite obter a relação entre a posição do objecto e da respectiva imagem em termos apenas da distância focal.

Equação das lentes

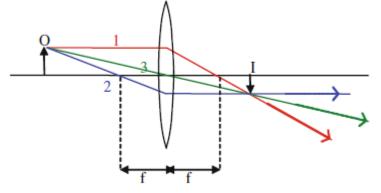
Quantity	Convention	
S	+ If object in front* of lens	
	 If object behind lens 	
s'	+ If image behind lens	
	 If image in front of lens 	1
h, h'	+ If erect	-
	 If inverted 	
R_1, R_2	+ If surface is convex	
	 If surface is concave 	
f	+ If converging	
	 If diverging 	



Physics of the Life Sciences, J. Newman, Springer, 2008.

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

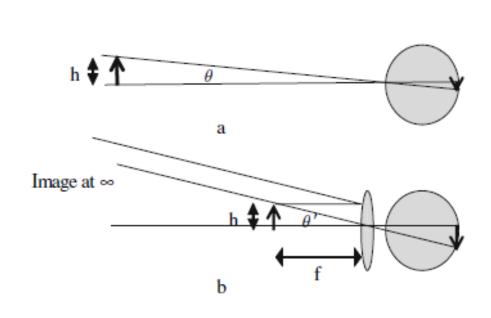
A equação das lentes permite obter a relação entre a posição do objecto e da respectiva imagem em termos apenas da distância focal.


Parâmetros das lentes

$$P_o = \frac{1}{f}$$

$$m = \frac{h'}{h} = -\frac{s'}{s}$$

Physics of the Life Sciences, J. Newman, Springer, 2008.



Tal como no caso dos espelhos, as imagens podem ser construídas a partir de regras gráficas simples, conhecida a posição do foco.

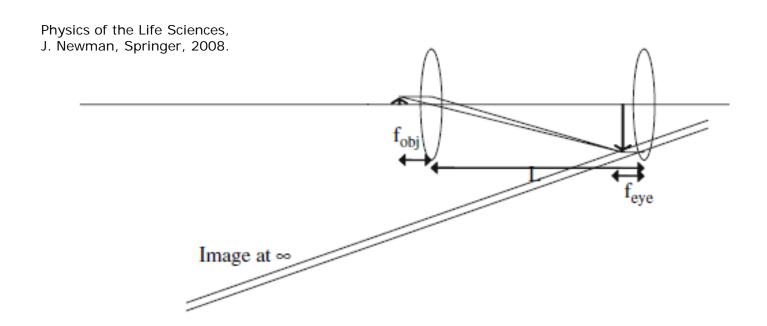
Os instrumentos ópticos usam combinações de lentes para obter imagens ampliadas. A difração limita o poder de resolução teórico destes instrumentos.

Lupas

O mais simples destes instrumentos é uma lupa.

$$m_L = \frac{\theta'}{\theta}$$

$$\theta = h/0.25$$

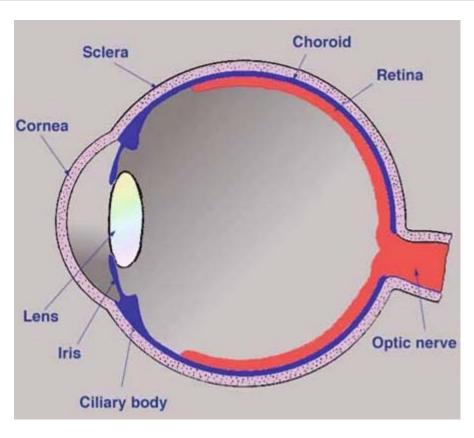

$$\theta' = h/f$$

$$m_L = \frac{0.25}{f}$$

Physics of the Life Sciences, J. Newman, Springer, 2008.

Os instrumentos ópticos usam combinações de lentes para obter imagens ampliadas. A difração limita o poder de resolução teórico destes instrumentos.

Microscópio óptico

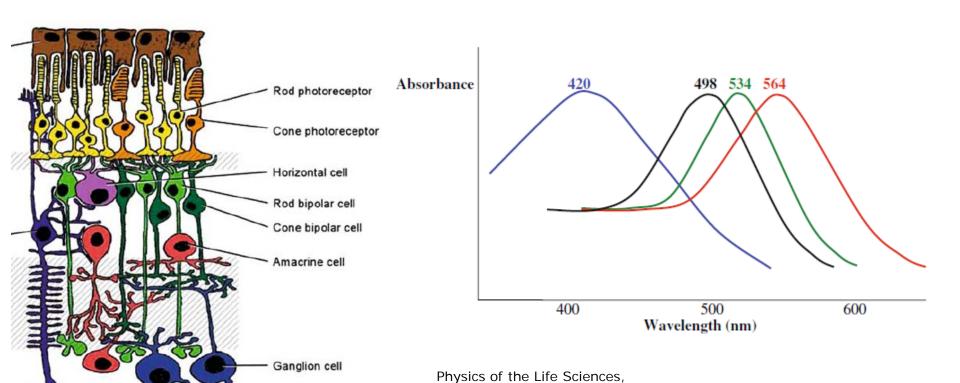


O microscópio electrónico usa, em vez de luz visível, feixes de electrões. O cdo associado é 10^5 vezes menor.

34

A visão é um processo complexo ainda só parcialmente compreendido.

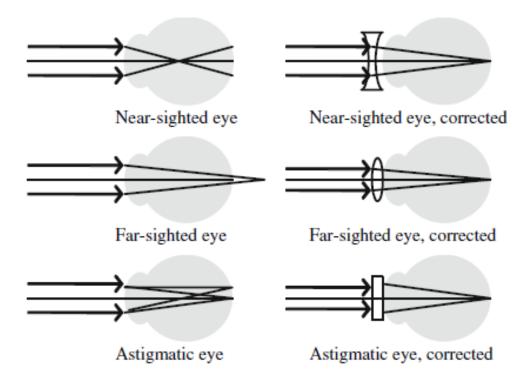
O olho humano



Do ponto de vista da óptica geométrica o elemento principal é o cristalino, que funciona como uma lente de potência variável para focar as imagens na retina.

Physics of the Life Sciences, J. Newman, Springer, 2008.

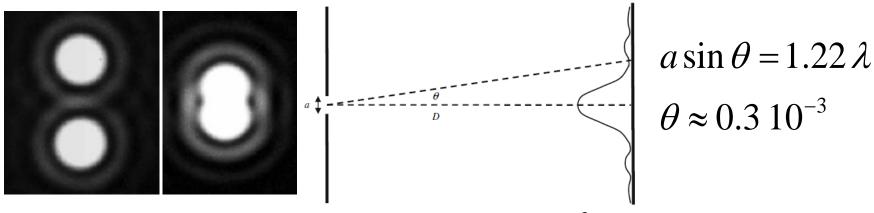
A retina é um detector sofisticado com células especializadas que permitem a visão da cor.


O olho humano

J. Newman, Springer, 2008.

Os problemas de visão mais comuns estão relacionados com as propriedades ópticas do cristalino como lente.

Defeitos de visão

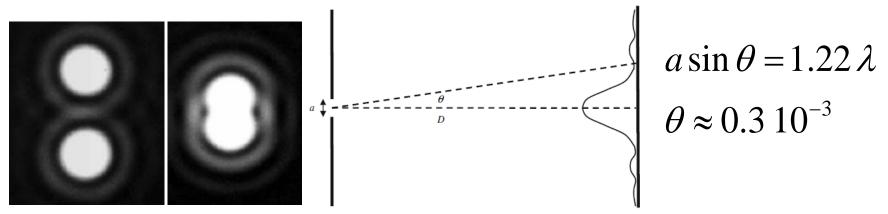


Physics of the Life Sciences, J. Newman, Springer, 2008.

Para qualquer instrumento óptico, a distância que é possível resolver está limitada pela difracção.

Problema 6.18

Considere o olho humano, com a pupila de cerca de 2 mm de diâmetro a trabalhar com luz de cerca de 500 nm de c.d.o.. Calcule a separação angular mínima e a separação efectiva mínima que é possível resolver à distância de 25cm.



$$\Delta_{pp} = tg\theta \ 0.25 \approx 0.3 \ 0.2510^{-3} = 0.075 \, mm$$

Para qualquer instrumento óptico, a distância que é possível resolver está limitada pela difracção.

Problema 6.18

Considere o olho humano, com a pupila de cerca de 2 mm de diâmetro a trabalhar com luz de cerca de 500 nm de c.d.o.. Calcule a separação angular mínima e a respectiva separação entre as imagens na retina. Compare com a distância média entre as células fotossensíveis da retina.

$$\Delta_r \approx 0.1 \Delta_{pp} \approx 0.0075 \, mm = 7.5 \, \mu m \approx 5 \, \mu m$$

A equação das lentes permite obter a relação entre a posição do objecto e da respectiva imagem em termos apenas da distância focal.

Problema 6.19

Um ponto luminoso dista 2.5 cm de uma lente convergente. A imagem é real e forma-se a 50 cm da lente. Calcule a distância focal da lente e a ampliação do referido objecto.

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$
 $\Rightarrow \frac{1}{f} = \frac{1}{0.025} + \frac{1}{0.5} = 42 \Rightarrow f = 2.38$

$$m = \frac{h'}{h} = -\frac{s'}{s} \implies m = -20$$

Os problemas de visão mais comuns estão relacionados com as propriedades ópticas do cristalino como lente.

Problema 6.21

Admitindo que o cristalino de um olho tem um índice de refracção de 1.4 e é uma lente convexa de igual raio nas duas faces, calcule o seu raio de curvatura para que uma imagem no infinito possa ser focada na retina a 2.5 cm de distância. Assuma a hipótese académica n=1 no interior do olho.

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \implies \frac{1}{2.5} = (1.4 - 1)\frac{2}{R}$$

$$R = 2 \,\mathrm{cm}$$

Os problemas de visão mais comuns estão relacionados com as propriedades ópticas do cristalino como lente.

Quiz 47

Para focar um objecto mais perto o raio de curvatura da lente tem de aumentar ou diminuir?

Os problemas de visão mais comuns estão relacionados com as propriedades ópticas do cristalino como lente.

Problema 6.22

A miopia resulta de uma potência óptica do sistema formado pela córnea e o cristalino demasiado grande em relação ao diâmetro do olho e leva à alteração das distâncias máxima e mínima de visão focada. Considere o caso de uma pessoa míope para quem essas distâncias são respectivamente 50 cm e 10 cm.

Calcule, desprezando a distância da lente à córnea, a potência da lente negativa necessária para corrigir a visão no caso de um objecto distante.

$$f = 0.025 \Rightarrow P_o = 40 d$$

$$\frac{1}{0.50} + \frac{1}{0.025} = \frac{1}{f'} \Rightarrow P'_o = \frac{1}{f'} = 42 d$$

$$\Delta P_o = -2 d$$

43

Problema 6.22

A miopia resulta de uma potência óptica do sistema formado pela córnea e o cristalino demasiado grande em relação ao diâmetro do olho e leva à alteração das distâncias máxima e mínima de visão focada. Considere o caso de uma pessoa míope para quem essas distâncias são respectivamente 50 cm e 10 cm.

Para que a visão de um objecto colocado próximo do olho esteja focada, a distância do objecto à córnea ('ponto próximo corrigido') deve ser tal que a imagem desse objecto produzida pela lente usada para a correcção coincida com o ponto próximo do olho míope. Calcule a distância referida.

$$\frac{1}{s} - \frac{1}{0.10} = -\frac{1}{2} \Rightarrow s = 0.105$$